

Hybrid Energy Transfer Line (HETL)

Merits of HETL:

- low energy consumption system for long transportation,
- low-voltage high-current system (for downsizing ac/dc converter),
- integrated energy transportation system which combines hydrogen fuel and SC power transmission.

Target parameters of hybrid energy transfer line.

Item	Values
Target distance	
total length to end user	1000 km
unit length between the cooling stations	10 km
Power Transmission	
Withstand voltage	+50 kV and -50 kV (100 kV)
rated current	dc 10 kA
Hydrogen Transportation	
capacity of transportation	100 ton/day (1.6 kg/s)
operation Temperature	17 – 24 K (@ 0.4 MPa)

10 kA Class MgB ₂	Cable		
Table Design parameters of 10 kA cla	ass MgB2 cable.		
Items	Design values		
Operation Temperature	17 – 24 K		
Materials of the SC strand	MgB2		
Diameter of the SC strand (and MgB2 core)	1.3 mm (0.5 mm)		
Operation Current of strand (Core Jc)	20 A (~100 A/mm2)		
(A) -	(2) Type B		
(1) Type A	Diameter of SC cable : 105/103 mm ⁹		
Thickness of Electrical Insulation : 12 mm	Thickness of Electrical Insulation : 12 mm		
Diameter of Cable : 61 mm ?	Diameter of L-H2 Channel: 100 mm?		
???Max.?Magnetic Field in a Cable : 0.12 T	Max. Magnetic Field in a Cable : 0.04 T		
InnerCorrugated Tube Protection Covering (143/130 mm?)	InnerCorrugated Tube Protection Covering (143/130 mm ?)		
Electrical Insulation	Electrical Insulation		
Liquid Hydrogr	Liquid Hydrogen		
MgB2 Cable	MaR 2 Wiros		
Vacuum & SI Space Outer Corrugated Tube (220/198 mm?)	(220/198 mm ?)		

Temperature Rise after 10 km delivery

Assumption:

Pressure of liquid hydrogen :0.4 MPaFlow rate of each line:50 tons/day (1.6 kg/s)

Parameters

Heat loads: 0.5 W/m, 1.0 W/m, 1.5 W/m, and 2.0 W/m

Temperature at Inlet (K)	Temperature at Outlet for Each Loss (K)				
	0.5 W/m	1.0 W/m	1.5 W/m	2.0 W/m	
17.0	17.6	18.1	18.6	19.1	
18.0	18.5	19.0	19.5	20.0	
19.0	19.5	19.9	20.4	20.8	
20.0	20.4	20.9	21.3	21.8	
21.0	21.4	21.9	22.3	22.7	
22.0	22.4	22.8	23.2	23.6	
23.0	23.4	23.8	24.2	24.5	

Table Calculation results of outlet temperature rise.

Applicability of 1 GW class hybrid energy transfer line of hydrogen and electricity is investigated. The results are concluded as follows;

- Power transportation capacity of the dc power line is 1 GW, and capacity of the liquid hydrogen transportation is 100 tons per day.
- To keep the liquid state of hydrogen anywhere in the unit section, the temperature and pressure of the inlet point were selected to 17 K and 0.4 MPa.
- When the heat leak into the liquid hydrogen is 1.0 W/m (expected value), the temperature at the outlet becomes 18.1 K.
- The total power consumption for the energy transfer system of 1000 km long becomes 132 MW. This value is equivalent to 13.2 % to the transport capacity of 1GW.

Thank you for your time and attention.

